
T
e

c
h

.
In

te
ro

p
.Tool Mec.

Tool Elec.

Workflow

Analysis

SCADA

Tool SW

Flexible Engineering Process Automation

Process: Continuous Integration & Test

Alexander Schatten Andreas Pieber Michael Handler Stefan Biffl

Christian Doppler Laboratory SE-Flex-AS

Institute of Software Technology and Interactive Systems (ISIS)
Vienna University of Technology

http://cdl.ifs.tuwien.ac.at

2

Motivation

Process „Continuous Integration & Test“

 Engineering Service Bus concept evaluation with real-world use cases

– General-purpose use case for flexible engineering: CI&T

– SE best-practice: continuous integration (CI) servers Continuum/Hudson

– Limitation: CI servers are monolithic and hard to extend or integrate into
a more complex tool landscape

 „Continuous Integration and Test“ (CI&T)

– Key part in an iterative systems development process

• if part of a system or engineering model gets changed,
the system has to be re-built and re-tested
to identify defects early and
to provide fast feedback on implementation progress
to the project manager and the owners of the changed system parts.

 -> Feasibility study with initial Engineering Service Bus prototype.

– Sub process “Change, Test & Result Notification”

– Technical integration of systems from several platforms.

3

Continuous Integration & Test Process

for Iterative Quality Assurance

Requirements and

Specification
Test Case

Generation

Implementation and

Test Case Execution

Requirement A

Requirement B

Requirement C

Test Case A1

Test Case A2

Test Case B1

Test Case B2

Test Case C1

Test Case C2

Test Run during Continuous Integration
Run 1 Run 2 Run 3 ...

ok ok ok

...

ok ok ok ok ok

ok ok

ok

ok ok ok ok

Continuous Integration & Test

 Frequent test runs

 Immediate feedback on test

results (e.g., daily builds)

 Efficient regression testing.

 Needs process automation

and tool support

 Build system under test

 Test automation

 Analysis of test results

 Notification on results

Current state of the practice

 Hudson

– Open source software

– Fixed process

– Plugin structure for extensions

– But takes considerable effort to gain the necessary knowledge

 Continuum

– Open source software

– Fixed process

– Also considerable effort to adapt to specific requirements

4

Alternatives

 Complex point to point integration

– Very high maintenance effort needed

– Hard to exchange a tool

5

Alternatives contd.

 Use OpenEngSB for CI & T Use Case

– Easy tool exchange

– Process is easy to adapt and extend

6

Tool Domains provide service

interfaces

 Subversion for example is connected via the SCM

domain

 Maven is connected via multiple domains (build, test,

deploy)

 In Drools rules and workflows the process engineer

uses the domains and their interfaces to connect to

tools

 Domains can be configured to forward messages to a

default tool

 It is possible to state explicitly to which tool a message

shall be sent in a rule or workflow

7

8

Continuous Integration Process in

Business Process Modeling Notation

Goal: Flexible CI&T server functionality.

Continuous Integration (CI) Process

 1. Build the source code,

 2. Test the built source code,

 3. Deploy the compiled source code

 4. Send notification about result to a

configured list of recipients.

Event-driven process definition (BPMN)

 Events

 Process steps

 Decisions

 Outgoing events

-> Decoupling of communication and tools.

9

The CI&T Process Model

 The CI&T process is defined with Drools Flow

Process Start

Action Node (execute action)

Switch Node (execute action and decide further route through the process based on the result)

Join Node

Process End

10

The CI&T Process Model

 The CI&T process is defined with Drools Flow

0. Start collection of report information

1. Build the source code

2. Test the built source code

3. Deploy the compiled source code

4. Send notification about result to a

configured list of recipients.

1 2

4
3

0

0. Start collection of report

information

1. Build the source code

2. Test the built source code

3. Deploy the compiled

source code

4. Send notification about

result to a configured list of recipients.

Components of the OpenEngSB in the

CI & T use case

11

1

2 4

3

0

12

Code examples

 Build-step code in switch node of Drools Flow graph

– Sends the service request to the build domain, which informs

the responsible tool (in our case Maven)

– Returns whether the build step was successful

– Based on the result of the build step it can be decided whether

the test and deploy steps should be performed or the CI & T

process should be stopped.

return build.buildProject();

The Ci & T Process in Drools Flow

Detailed description

13

…

boolean citFinishedSuccessfully = false;

String reportId = report.collectData(workflowInstanceId);
...

if(build.buildProject() == true)

else

if(test.runTests() == true)

else

if(deploy.deployProject()) {

citFinishedSuccessfully = true;
}

…

String status = citFinishedSuccessfully ? "success" : "fail";

Report r = report.generateReport(reportId);

Notification n = new Notification();

…

n.setMessage("Cit process finished with result: "+status);

n.addAttachment(r);

…
notification.notify(n);

14

Flexible Process Extension for CI&T

Process extensions

 Add issue ticket functionality

– Trac tool instance

 Add logging functionality

– Calculate project statistics

over several projects.

 Add “conditional build failure”

– Build should fail only if a failed

test was successful before.

Technology-independent extension

 Event-driven extension

– Add new event listeners

 Tool evolution behind

tool domain interface

– Different kinds of notification

Process Customization

 A process engineer can change the process by

– editing the overall workflow using the graphical drools flow

editor

– editing what happens in each step, which means changing the

code in the nodes of the workflow

– defining rules that react to the events triggered by the workflow

and are thus more independent from the workflow

– configuring the tools and tool connectors

– configuring the tool domain

15

 Rule to create an issue if build, test or deploy fails

– If one of these three events happens and the process step was

not successful create an issue.

Process Customization by Drools Rule

Example

16

package org.openengsb

rule “createIssue"

when

e : BuildEvent(buildSuccessful == false) or

e : TestEvent(testRunSuccessful == false) or

e : DeployEvent(deploySuccessful == false)

then

issue.createIssue("cit step '" +e.getDomain() + "‘ failed");

end

17

Lessons learned

 Evidence from the prototype

– Successful reproduction of continuous integration process on
OpenEngSB.

– OpenEngSB allows prototyping new variants of software engineering
processes more open, flexibly, and transparent than rigid CI tools.

 Key benefits

– Tool domains simplify exchanging tool instances

– Flexible extension of workflow and tool instance logic

 Effort of integration

– Integration of a tool with well-documented API took 1 to 2 days

– Process implementation effort depends on process complexity;
expect days for technical work for a sufficiently well-defined process.

 Limitations

– Added complexity to the tool environment from new middleware layer
that needs configuration and administration.

18

Summary

 Complex software-intensive systems raise need
for engineering process automation.

 Flexible integration of engineering tools and systems along the lifecycle
is a foundation for better process automation and quality management.

 Even initial Engineering Service Bus (EngSB) implementations
bring the foundation for

– Flexible (software+) engineering process prototyping

– Awareness in the team on relevant changes
in the project environment

– Data collection and analysis for quality assurance.

 Future Work

– Collaboration of federated EngSBs

– Engineering model synchronization and
defect detection across tools.

T
e

c
h

.
In

te
ro

p
.Tool Mec.

Tool Elec.

Workflow

Test

SCADA

Tool SW

19

Backup Slides

20

Design of Messages

 OpenEngSB uses XML as message format

 Predefined header that all message have to carry

– Context-ID

– Correlation-ID

– Workflow-ID [only message in workflows]

– Workflow Instance-ID [only message in workflows]

 Payload in a standardized format

21

ScmCheckInEvent Message

<?xml version="1.0" encoding="UTF-8"?>

<list xmlns="http://org.openengsb/util/serialization" name="event" … >

<text name="event" … >org.openengsb.drools.events.ScmCheckInEvent</text>

<list name="superclasses" … >

<text name="superclass" … > org.openengsb.core.model.Event</text>

<text name="superclass" … >java.lang.Object</text>

</list>

<text name="name" … >scmCheckInEvent</text>

<text name="domain" … >scm</text>

</list>

22

Message Flow during the CI&T Process

1

2

3

0

4

0. Start collection of

report

information

1. Build the

source code

2. Test the built

source code

3. Deploy the

compiled

source code

4. Send notification about

result to a configured list of

recipients.

