Flexible Engineering Process Automation
Process: Continuous Integration & Test

Alexander Schatten Andreas Pieber Michael Handler Stefan Biffl
Christian Doppler Laboratory,SE-Flex-AS

Institute of Software Technology and Interactive Systems (I1SIS)
Vienna University of .rechnology

http://cdl.ifs.tuwjen.ac:at

- 4

Iogi cals

Motivation n

Process ,,Continuous Integration & Test"

-l
—
-

O

Engineering Service Bus concept evaluation with real-world use cases
— General-purpose use case for flexible engineering: CI&T
— SE best-practice: continuous integration (Cl) servers Continuum/Hudson

— Limitation: Cl servers are monolithic and hard to extend or integrate into
a more complex tool landscape

,Continuous Integration and Test* (CI&T)
— Key part in an iterative systems development process

« if part of a system or engineering model gets changed,
the system has to be re-built and re-tested
to identify defects early and
to provide fast feedback on implementation progress
to the project manager and the owners of the changed system parts.

-> Feasibility study with initial Engineering Service Bus prototype.
— Sub process “Change, Test & Result Notification”
— Technical integration of systems from several platforms.

Continuous Integration & Test Process
for Iterative Quality Assurance

Continuous Integration & Test

Frequent test runs

Immediate feedback on test
results (e.g., daily builds)

Efficient regression testing.

Needs process automation
and tool support

= Build system under test
= Test automation

= Analysis of test results
= Notification on results

¥

)

Requirements and
Specification

Test Case
Generation

Implementation and
Test Case Execution

Y

o O

—I
—
-

O

Test Run during Continuous Integration

Runl| Run2| Run3
Requirement Ai Test Case Al
Test Case A2 ‘ . .
Requirement Bi Test Case B1 . .
Test Case B2 ‘ . . .
Requirement Ci Test Case C1 .
Test Case C2 ‘ . . ‘ . 7]

Current state of the practice [l

-l
—
-

O

Hudson

— Open source software
— Fixed process

— Plugin structure for extensions

— But takes considerable effort to gain the necessary knowledge
Continuum

— Open source software
— Fixed process

— Also considerable effort to adapt to specific requirements

Alternatives

= Complex point to point integration

Customer Input

Requirements SV el

NRSE

<« _

\‘:é’fll‘._—
NI\ —
’-‘, 2 »“Qf

o o e

Notification
X X \\~”| Mail/lSMS/etc.
"&‘;“ ¢

A
\»’{
\

27>€xS
775K NN

A _ o

— Very high maintenance effort needed
— Hard to exchange a tool

Alternatives contd.

= Use OpenEngSB for Cl & T Use Case

Maven Deploy

-
il

Project
Configuration

Project Custor_‘nerlnput ' E‘I" Event Logger Project
Management | Requirements) Monitoring
e

Engineering ~
7))
=
Maven Build Ii o Issue Tracker | T€eam
o Communication
E | Notification
Maven Test S | Mailsms/etc.
()]
c
-
Q
Q
=
O)
1]
\——/

— Easy tool exchange

— Process is easy to adapt and extend

—I
—
-

O

Tool Domains provide service n 1L
Interfaces >

= Subversion for example is connected via the SCM
domain

= Maven is connected via multiple domains (build, test,
deploy)
= In Drools rules and workflows the process engineer

uses the domains and their interfaces to connect to
tools

= Domains can be configured to forward messages to a
default tool

= [tis possible to state explicitly to which tool a message
shall be sent in a rule or workflow

Continuous Integration Process in

Business Process Modeling Notation

Goal: Flexible CI&T server functionality.
Continuous Integration (Cl) Process

= 1. Build the source code,

= 2. Test the built source code,

= 3. Deploy the compiled source code

= 4. Send notification about result to a
configured list of recipients.

Event-driven process definition (BPMN)
Events

Process steps

Decisions

Outgoing events

-> Decoupling of communication and tools.

«Pool » Test Systam

The CI&T Process Model

= The CI&T process is defined with Drools Flow

ﬁ Start startReport
uild worked
otherwise
otherwise tests worked

EI:@:E deployPro_]ect
@ sendRepo |
Osat | Process Start l
Action Node (execute action) End

".? Switch Node (execute action and decide further route through the process based on the result)

@ Join Node

End Process End

10

The CI&T Process Model

= The CI&T process is defined with Drools Flow

0. Start collection of report information
otherwise

1. Build the source code

2. Test the built source code

3. Deploy the compiled source code

{2 Start {C} startReport .———b

uild worked

sendRepo

otherwise

4. Send notification about result to a
configured list of recipients.

—I
—
-

O

tests worked

(I:C:{f[- deployPrOJect
3

Components of the OpenEngSB in the

Cl & T use case

—I
—
-

O

Project Customer Input Event Logger Project
Management | Requirements Monitoring
0
Engineering
Maven Build |— D) Issue Tracker | Team o
0. Start collection of report Communication
information 2 4 | Notification
Maven Test | Mailsms/etc.

1. Build the source code

2. Test the built source code | Maven Deploy

3. Deploy the compiled
source code

Project

Configuration

w

(Engineering Service Bus (EngSB)]

4. Send notification about
result to a configured list of recipients.

11

Code examples

- build worked n
>

otherwise

= Build-step code in switch node of Drools Flow graph

return build.buildProject() ;

— Sends the service request to the build domain, which informs
the responsible tool (in our case Maven)

— Returns whether the build step was successful

— Based on the result of the build step it can be decided whether

the test and deploy steps should be performed orthe Cl1 & T
process should be stopped.

—I
—
-

O

—I
—
-

The Ci & T Process in Drools Flow l]
Detailed description

O

if(build.buildProject() == true)

{J Start —b startReport—h-._I

else

else

if(test.runTests() == true)

\

boolean citFinishedSuccessfully = false;
String reportld = report.collectData(workflowlnstanceld);

deployProjeca
_F sendReport

if(deploy.deployProject()) {
String status = citFinishedSuccessfully ? "success" : "fail"; }C|tF|n|shedSuccessfuIIy = U
Report r = report.generateReport(reportld);

e NN B End
Notification n = new Notification(); = En

n.setMessage("Cit process finished with result: "+status);
n.addAttachment(r);

Hétification.notify(n);

14

Flexible Process Extension for CI&T

Process extensions

-l
—
-

O

= Add issue ticket functionality
— Trac tool instance

= Add logging functionality
— Calculate project statistics

«Pool» Ticketing

Add Tickets

over several projects.

= Add “conditional build failure”

— Build should fail only if a failec
test was successful before.

#Pool » Statistics

Technology-independent extension
= Event-driven extension
— Add new event listeners

Store Dats

= Tool evolution behind
tool domain interface

— Different kinds of notification

-l
—
-

Process Customization n

O

= A process engineer can change the process by

— editing the overall workflow using the graphical drools flow
editor

— editing what happens in each step, which means changing the
code in the nodes of the workflow

— defining rules that react to the events triggered by the workflow
and are thus more independent from the workflow

— configuring the tools and tool connectors
— configuring the tool domain

16

Process Customization by Drools Rule I]

Example

= Rule to create an issue if build, test or deploy fails

-l
—
-

O

package org.openengsb
rule “createlssue"

when

e : BuildEvent (buildSuccessful == false) or

e : TestEvent (testRunSuccessful == false) or

e : DeployEvent (deploySuccessful == false)
then

issue.createlssue("cit step '" +e.getDomain() + "' failed");
end

— If one of these three events happens and the process step was
not successful create an issue.

-l
—
-

Lessons learned [l

O

Evidence from the prototype

— Successful reproduction of continuous integration process on
OpenEngSB.

— OpenEngSB allows prototyping new variants of software engineering
processes more open, flexibly, and transparent than rigid ClI tools.

= Key benefits

— Tool domains simplify exchanging tool instances
— Flexible extension of workflow and tool instance logic

Effort of integration

— Integration of a tool with well-documented API took 1 to 2 days

— Process implementation effort depends on process complexity;
expect days for technical work for a sufficiently well-defined process.

= Limitations

— Added complexity to the tool environment from new middleware layer
that needs configuration and administration.

17

Summary [l

-l
—
-

O

= Complex software-intensive systems raise need
for engineering process automation.

= Flexible integration of engineering tools and systems along the lifecycle
Is a foundation for better process automation and quality management.

= Eveninitial Engineering Service Bus (EngSB) implementations
bring the foundation for

= [Future Work

18

Flexible (software+) engineering process prototyping

Awareness in the team on relevant changes
in the project environment

Data collection and analysis for quality assurance.

Collaboration of federated EngSBs Tool Mec. -~ 5}~ SCADA
1

N
Engineering model synchronization and Tool Elec. - £ b Test
defect detection across tools. — i —
Tool SW = ,0_’ — Workflow
_/

1

Backup Slides nm

Design of Messages

= OpenEngSB uses XML as message format

= Predefined header that all message have to carry
— Context-ID
— Correlation-1D
— Workflow-ID [only message in workflows]
— Workflow Instance-ID [only message in workflows]

= Payload in a standardized format

-l
—
-

O

—I
—
-

ScmCheckIinEvent Message ﬂ

O

<?xml version="1.0" encoding="UTF-8"?>
<list xmIns="http://org.openengsb/util/serialization" name="event" ... >

<text name="event" ... >org.openengsb.drools.events.ScmChecklnEvent</text>
<list name="superclasses" ... >

<text name="superclass" ... > org.openengsb.core.model.Event</text>

<text name="superclass" ... >java.lang.Object</text>
</list>

<text name="name" ... >scmCheckInEvent</text>
<text name="domain" ... >scm</text>
</list>

21

Message Flow during the CI&T Process

/Scm Domain

22

—I
—
-

O

/Build Domain

[Test Domain

/Deploy Domain

/Report Domain

/Notification Domain

scm check in eventy | /CI & T Workflow E E E i
I I 1 I
[} I 1 1
i startReport i i I
0 "| S | ____reportD_ i E
. . I I 1 I
= build Project \ build started!event :
I 1 I
1 : i i
. : build finishedievent \
e build result_________ . | | |
- run tests : ' testing startedievent i
2 : o :
t testing finishedievent !
| koo _testresut _________ | I ! :
- deploy project i i _deploy started event !
B | : |
I \ deploy finished event
1 (S (R I
— I I 1 1
i i I i
- '__generate report:(reportID) ! i
o __report Y .] E
I I 1 1
- 1] 1 1
4 i send notification|(report) i ; i
I I 1 1
S S S S]

0. Start collection of

report
information

1. Build the
source code

2. Test the built
source code

3. Deploy the
compiled
source code

4. Send notification about
result to a configured list of

recipients.

